A yolk-shell design for stabilized and scalable li-ion battery alloy anodes.
نویسندگان
چکیده
Silicon is regarded as one of the most promising anode materials for next generation lithium-ion batteries. For use in practical applications, a Si electrode must have high capacity, long cycle life, high efficiency, and the fabrication must be industrially scalable. Here, we design and fabricate a yolk-shell structure to meet all these needs. The fabrication is carried out without special equipment and mostly at room temperature. Commercially available Si nanoparticles are completely sealed inside conformal, thin, self-supporting carbon shells, with rationally designed void space in between the particles and the shell. The well-defined void space allows the Si particles to expand freely without breaking the outer carbon shell, therefore stabilizing the solid-electrolyte interphase on the shell surface. High capacity (∼2800 mAh/g at C/10), long cycle life (1000 cycles with 74% capacity retention), and high Coulombic efficiency (99.84%) have been realized in this yolk-shell structured Si electrode.
منابع مشابه
High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity
Alloy-type anodes such as silicon and tin are gaining popularity in rechargeable Li-ion batteries, but their rate/cycling capabilities should be improved. Here by making yolk-shell nanocomposite of aluminium core (30 nm in diameter) and TiO2 shell (B3 nm in thickness), with a tunable interspace, we achieve 10C charge/discharge rate with reversible capacity exceeding 650mAh g 1 after 500 cycles,...
متن کاملSnO2/α-MoO3 core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes.
Extraordinarily high reversible capacity of lithium-ion battery anodes is realized from SnO(2)/α-MoO(3) core-shell nanobelts. The reversible capacity is much higher than traditional theoretical results. Such behavior is attributed to α-MoO(3) that makes extra Li(2)O reversibly convert to Li(+).
متن کاملElectrochemical Performance of Porous Carbon/Tin Composite Anodes for SodiumIon and LithiumIon Batteries
The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na-ion and Li-ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na-ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li-ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The ...
متن کاملImproving the performance of Lithium-Sulfur Batteries using Sulfur-(TiO2/SiO2) yolk–shell Nanostructure
Lithium-Sulfur (Li-S) batteries are considered as one of the promising candidates for next-generation Li batteries in near future. Although, these batteries are suffering from certain drawbacks such as rapid capacity fading during the charge and discharge process due to the dissolution of polysulfides. In this paper, Sulfur/metal oxide (TiO2 and SiO2) yolk–shell structures have been successfull...
متن کاملCorrigendum: High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity
This corrects the article DOI: 10.1038/ncomms8872.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2012